位置:網投平台APP > 獵奇 > 正文 >

90%人工智能公司都虧損?盈利難背後的大數據門檻

2019年07月22日 09:52來源:未知網投平台APP版

廣汽吉奧gx6,諾基亞7500軟件,安卓go桌面主題

邱智麗

【90%人工智能公司都虧損 盈利難背後的大數據門檻】

AI(人工智能)落地場景在不斷增多,但賺錢依舊艱難。

億歐報告顯示,2018年全年,近90%的人工智能公司處于虧損狀态,而10%賺錢的企業基本是技術提供商。從談概念、講技術,到拼場景、搶落地,建立在大數據基礎之上的人工智能,仍面臨數據本身帶來的挑戰。

“我們經常提及大數據,但事實上我們并不需要那麼多的數據,AI未來的一個趨勢是小數據崛起。”在市北·GMIS2019全球數據智能峰會上,斯坦福大學教授、Landing.ai創始人、CEO吳恩達表示。

一個具體的案例是工廠網投平台APP屏幕劃痕檢測。目前不少是利用人眼來檢測網投平台APP是否存在劃痕,如果擁有100萬個劃痕網投平台APP,AI可以非常高效地識别網投平台APP劃痕。但現實情況是沒有任何工廠會有幾百萬不同劃痕的網投平台APP,這個時候小樣本學習(fewshotlearning),即利用較少的數據得出同樣準确結論的人工智能,将有助于推動整個領域的發展。

小樣本學習的迫切性更在于落地過程面臨的數據孤島、數據隐私保護導緻的數據割裂問題,讓AI技術很難充分發揮價值。

“和AI用于比賽需要上千萬的圖片訓練不同,當AI深入行業我們看到的數據往往是小數據和細碎的數據,也就是沒有聯通起來的數據,再先進的AI技術也很難用上。”國際人工智能學會理事長、香港科技大學教授、微衆銀行首席人工智能官楊強說道。

今年5月,國家網投平台APP信息辦公室發布了《數據安全管理辦法(征求意見稿)》,提出在中國境内利用網絡開展數據、存儲、傳輸、處理、使用等活動,以及數據安全的保護和監督管理意見。

楊強認為“中國版GDPR(通用數據保護條例)”即将到來,數據隐私在走向嚴格化、全面化,這使得企業在實際應用中可以使用的數據維度和範圍并不大。數據隐私保護的趨嚴,為人工智能技術升級提供了契機。

以保險行業利用AI進行個性化定價為例,背後需要業務數據和用戶網投平台APP行為數據融合,理想的狀态是可以拿到非常豐富的用戶畫像,與用戶的ID高度匹配,但實際情況迫于隐私、安全、法規等原因,企業可以應用的數據是非常有限的。

再例如在小微企業貸款應用方面,AI需要引入票據數據、資産數據、輿情數據等,但由于數據的割裂,實際應用中隻能使用一些政府的數據,例如央行的征信報告,但這些報告隻能覆蓋不到10%的人群。這一問題在醫療領域更為明顯,不同醫院的醫療影像數據很難彙聚到一起,形成大數據來訓練一個醫療模型。

針對數據割裂帶來的人工智能落地難問題,楊強提出了聯邦學習。所謂聯邦學習,是多個數據方之間組成一個聯盟,共同參與到全局建模的建設中,各方之間在保護數據隐私和模型參數基礎上,僅共享模型加密後的參數,讓共享模型達到更優的效果。

據楊強介紹,聯邦學習分為橫向聯邦和縱向聯邦,橫向聯邦是指企業各方數據維度相同、ID維度不同,更多存在于消費者應用中;縱向聯邦是指企業各方數據的ID維度相同(樣本重疊)、數據維度不同,更多存在于B端應用。

楊強認為聯邦學習最大的優勢是保證數據不出戶,通過生态在不同行業選取合作夥伴,用群體智能不斷提升模型效果。因此聯邦學習一定是多方共同協作組成一個聯盟,生态的建設十分重要。

面對AI落地難、盈利難問題,吳恩達則認為,在期待AI為企業帶來紅利之前,企業需要避免幾個陷阱。首先AI技術會影響很多企業做業務的核心,所以選擇項目是非常重要的,從小的項目開始,可以建立好的基礎,同時幫團隊獲得動能。

其次團隊建設不能僅依靠明星工程師,而是要建立一個完善的、跨學科、跨職能的團隊。同時不要期待AI立刻産生作用,而是要多次嘗試,對AI發展的回報曲線進行合理預算。不要使用傳統的流程評估人工智能項目,應該為AI項目團隊設立合适的KPI和目标。

本文地址:http://www.juhua523272.cn/lieqi/146844.html 轉載請注明出處!

今日熱點資訊
http://m.juhua523272.cn|http://wap.juhua523272.cn|http://www.juhua523272.cn||http://juhua523272.cn